
Special report

A new algorithm for degree-constrained
minimum spanning tree based on the reduction technique

Aibing Ning a,*, Liang Ma a, Xiaohua Xiong b

a School of Management, University of Shanghai for Science and Technology, Shanghai 200093, China
b College of Computer and Information, Shanghai Second Polytechnic University, Shanghai 201209, China

Received 29 October 2007; received in revised form 12 November 2007; accepted 12 November 2007

Abstract

The degree-constrained minimum spanning tree (DCMST) is an NP-hard problem in graph theory. It consists of finding a spanning
tree whose vertices should not exceed some given maximum degrees and whose total edge length is minimal. In this paper, novel math-
ematical properties for DCMST are indicated which lead to a new reduction algorithm that can significantly reduce the size of the prob-
lem. Also an algorithm for DCMST to solve the smaller problem is presented which has been preprocessed by reduction algorithm.
� 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited and Science in
China Press. All rights reserved.

Keywords: Degree-constrained minimum spanning tree; Reduction algorithm; Edge exchange technique; Combinatorial optimization

1. Introduction

The minimum spanning tree (MST) problem is an
important problem in the design of communication net-
works and it can be solved in polynomial time [1,2]. How-
ever, in real networks, vertices (or nodes) are usually
subject to some degree constraints. For example, exchanges
or switches can only be physically connected to a limited
number of linking wires. Also when designing a network
for maximum reliability, introducing a degree constraint
limits the damage that may be caused by a single exchange
failure. Unlike the MST, the general degree-constrained
minimum spanning tree (DCMST) is NP-hard [3–7].

Generally speaking, finding a DCMST is a difficult task
[5], and several, mainly heuristic, solution approaches exist
in the literature. Ribeiro and Souza [3] implemented a var-
iable neighborhood search for generating good heuristic
solutions for the DCMST. Recently, Andrade et al. [7]
present a fast and effective heuristic for its solution. Using

Lagrangian dual information, optimality of a solution can
be proven in several cases. Goemans [8] designed a polyno-
mial-time approximation algorithm for the DCMST prob-
lem with degree bound b for all vertices that finds a
spanning tree of maximum degree at most b + 2 whose cost
is at most the cost of the optimum spanning tree of maxi-
mum degree b. Volgenant [9], Knowles and Corne [10],
Krishnamoorthy et al. [11] and Raidl [12] presented and
compared several heuristics like simulated annealing
approaches, evolutionary algorithms, Lagrangian relaxa-
tion and branch-and-bound methods on different classes
of instances. Caccetta and Hill [13] also implemented a
standard branch-and-cut algorithm which solves the
DCMST problem exactly. We also reported an evolution-
ary algorithm for DCMST [14].

Different from these measures, the algorithm presented
in this paper fully employs the mathematical properties
of the problem to get a reduction technique which reduces
the size of the problem. Then, based on the classic Krus-
kal’s algorithm, it employs the edge exchange technique
to get an algorithm to solve the problem which has been
preprocessed by the reduction algorithm.

1002-0071/$ - see front matter � 2007 National Natural Science Foundation of China and Chinese Academy of Sciences. Published by Elsevier Limited

and Science in China Press. All rights reserved.

doi:10.1016/j.pnsc.2007.11.014

* Corresponding author. Tel.: +86 21 50762101.
E-mail address: nabnab@163.com (A. Ning).

www.elsevier.com/locate/pnsc

Available online at www.sciencedirect.com

Progress in Natural Science 18 (2008) 495–499



2. Notations and problem definition

2.1. Notations

Let us introduce some of the basic vocabulary and
notions of graph theory. We will use the vocabulary and
notions in the following parts of the paper.

A path p(u,v) in a graph G = (V,E) from vertex u 2 V to
vertex v 2 V is a list p(u,v) = (u,v1,v2, . . .,vk,v) of vertices
of V such that (u,v1), (vk,v) 2 E, and (vi,vi+1) 2 E for
i = 1, . . .,k � 1. A path p(u,v) in G with u = v is called a cycle

in G. The length jp(u,v)j of a path p(u,v) = (u,v1,v2, . . .,vk,v)
is defined by k + 1, namely the number of edges between u

and v in p(u,v). If (v,w) 2 E, then we call w and v neighbors.
The neighbors of a vertex v is N(v) = {wj(v,w) 2 E}. For
u,v 2 V, we abbreviate N(u) [ N(v) with N(u,v).
N([v]) = N(v) [ {v} denotes the closed neighborhood of
v 2 V. The degree d(v) of v 2 V is defined by d(v) = jN(v)j.
Let G = (V,E) be a graph and V1 � V. GjV1 =
(V1,E1), E1 = {(x,y)jx,y 2 V1 and (x,y) 2 E} is called the
restriction from G to V1. A graph G1 = (V1,E1) is called a
subgraph of G = (V,E) if V1 � V and E1 � E. We denote
the subgraph property with G1 � G. For a graph
G = (V,E) and a vertex u 2 V we write G � u to denote
(Vn{u},En{(x,y)jx = u or y = u}), the graph G without the
vertex u. For a set V1 we write G � V1 for (VnV1,
En{(x,y)jx � V1 or y � V1}).

Let dT(vj) denote the degrees of the vertex vj in the graph
T, bj denote the constraints on the degree dT(vj) of each ver-
tex vj in the graph T, w(va,vb) the weight or cost of the edge
(va,vb), and T* a degree-constrained minimum spanning
tree of graph G.

2.2. Problem definition

The degree-constrained minimum spanning tree prob-
lem can be stated as follows:

Let G = (V,E) be a connected weighted undirected
graph, where V = {v1,v2, . . .,vn} is the vertex set of G,
and E = {e1,e2, . . .,em} is the edge set of G. Let
W = {w1,w2, . . .,wm} represent the weight or cost of each
edge where the weight is restricted to be a non-negative real
number.

Any subgraph of G can be described using a vector
X = (x1,x2, . . .,xm) where each element xi is defined by:

xi ¼
1 if edge ei is part of the subgraph

0 otherwise

�
ð1Þ

Let S be a subgraph of G. S is said to be a spanning tree in
G if

(1) S contains all the vertices of G.
(2) S is connected and contains no cycles.

Now let T be the set of all spanning trees in G, a mini-
mum spanning tree is defined as (2).

min zðxÞ ¼
Xm

i¼1

wixijxi 2 T

( )

ð2Þ

If bj is the constraint on the degree dT(vj) of each vertex
vj in the graph T, then a degree-constrained minimum
spanning tree is defined as (3).

min zðxÞ ¼
Xm

i¼1

wixijdT ðvjÞ 6 bj; vj 2 V ; xi 2 T

( )

ð3Þ

3. Algorithm

3.1. Mathematical properties

We introduce the properties of the problem that can be
employed to reduce the size and the hardness of the
problem.

Theorem 1. All the incident edges of the pendant vertices

(vertices of degree 1) should be included in the degree-

constrained minimum spanning tree T*.

Proof. Since degree-constrained minimum spanning tree is
a connected graph, so all the incident edges of the pendant
vertices (vertices of degree 1) should be included in the T*

and should be deleted from graph G. Otherwise, the tree T*

must be a non-connected graph. All pendant vertices and
their incident edges should be included in the degree-con-
strained minimum spanning tree. h

Theorem 2. If G = (V,E) is a connected undirected graph,

V1 = {vijbi = 1 and vi 2 V}, E1 = {(vi, vj) jvi, vj 2 V1,

(vi, vj) 2 E}, and jVj > 2 then any edge in E1 should be
excluded from T*.

Proof. Suppose that an edge (vi,vj) 2 E1 and the edge (vi,vj)
are in the T*, since bi = 1 and bj = 1, then vi, vj cannot be
connected with any other vertex in T*, so any edge in E1

should be excluded from T*. h

Theorem 3. Suppose vk is a degree-2 vertex in the graph G

with two neighbors vi and vj such that there do not exist
any path p(vi, vj) which do not visit the vertex vk. That is,

there do not exist any path p(vi, vj) such that vk 62 p(u, v) in

G. Then the edge (vk, vi) and the edge (vk, vj) must be included

in T*.

Proof. Assume that edge (vk,vi) or edge (vk,vj) is excluded
in T*, since there do not exist any path p(vi,vj) such that
vk 62 p(vi,vj) in G, then there must not exist any path p(vi,vj)
in T*, and then T* is not a connected graph. So the edge
(vk,vi) and the edge (vk,vj) must be included in T*. h

We can use the dynamic transitive closure algorithm
[15,16] to decide whether there exist any path p(vi,vj) such
that vk 62 p(vi,vj).

496 A. Ning et al. / Progress in Natural Science 18 (2008) 495–499



3.2. Reduction algorithm

Based on the above analysis, the reduction algorithm for
DCMST may be sketched as:

Algorithm 1. Reduction_DCMST

Input: Graph G = (V,E), weight function w and degree
constraint b.
Output: G = (V,E), T*.
begin
1. Using Theorem 2 to remove all edges that satisfy the

conditions.
2. Using Theorem 1 to remove all pendant vertices (ver-

tices of degree 1) and the corresponding edges from G

and add the corresponding edges to T*.
3. Using Theorem 3 to remove all the edges that satisfy

the conditions from G and add all the edges to T*.
end

The worst case time complexity of step 1 is O(n2) where
n = jVj, step 2 is O(n), and step 3 is O(n3). So the worst case
time complexity of the entire algorithm is O(n3).

3.3. Finding a degree-constrained tree

A tree is a subgraph of G that does not contain any cir-
cuits. As a result, there is exactly one path from each vertex
in the tree to each other vertex in the tree. A spanning tree
of a graph G is a tree containing all vertices of G. A mini-
mum spanning tree (MST) of an undirected, weighted
graph G is a spanning tree of which the sum of the edge
weights (costs) is minimal.

There are several greedy algorithms for finding a mini-
mal spanning tree T* of a graph. The algorithms of Krus-
kal and Prim are well known of them.

Kruskal’s algorithm. Repeat the following step until the
set T* has n � 1 edges (initially T* is empty). Add to T* the
shortest edge that does not form a circuit with edges
already in T*.

Prim’s algorithm. Repeat the following step until the set
T* has n � 1 edges (initially T* is empty): Add to T* the
shortest edge between a vertex in T* and a vertex not in
T* (initially pick any edge of shortest length).

Although both are greedy algorithms, they are different in
the sense that Prim’s algorithm grows a tree until it becomes
the MST, whereas Kruskal’s algorithm grows a forest of
trees until the forest reduces to a single tree, the MST.

In this paper, we find a degree-constrained tree using an
algorithm based on the classic Kruskal’s algorithm to build
a minimum spanning tree where it always keeps the degrees
of all vertices satisfying all the degree constraints.

3.4. Edge exchange technique

Edge exchange technique was employed to improve a
spanning tree of graph. Firstly, edge exchange deletes some

edges from a tree, thus breaking the tree into two or more
than two subtrees, and then reconnects those subtrees into
one tree in a possible way [14,17]. Based on this idea, we
use two edge exchange methods to improve the existing
degree-constrained tree.

(1) 1-opt edge exchange operator

Definition 1. Given a spanning tree T of graph G and two
edges e 2 T and e1 62 T, the pair (e,e1) gives an admissible
exchange in T if T � e + e1 is a spanning tree.
It can be seen that 1-opt edge exchange operation changes
the degree of vertex in spanning tree.

(2) 2-opt edge exchange operator
Since 1-opt edge exchange operator changes the
degree of vertex in spanning tree, the improved span-
ning tree by 1-opt exchange operator might not sat-
isfy the degree constraint. The 2-opt edge exchange
operation does not change degree of any vertex in
spanning tree, so the improved spanning tree by 2-
opt edge exchange operator will always satisfy the
degree constraint.
T = (V,ET) is a spanning tree of graph G = (V,E).
Suppose that edge (i, i + 1) 2 ET, edge (j, j + 1) 2 ET,
edge (i, j) 2 G and edge (i, j) 62 ET, edge
(i + 1, j + 1) 2 G and edge (i + 1, j + 1) 62 ET, and
w(i, j) + w(i + 1, j + 1) < w(i, i + 1) + w(j, j + 1). Then
the edges (i, i + 1) and (j, j + 1) can be replaced by
edges (i, j) and (i + 1, j + 1).

3.5. The algorithm and the time complexity

From the above analysis, the main algorithm for
DCMST may be sketched as:

Algorithm 2. Main_DCMST

Input: Graph G = (V,E), weight function w and degree
constraint b.
Output: G* = (V*,E*), G* denote one degree-constrained
minimum spanning tree of G.
begin

1. V* = V; E* = U; Start with a graph T* = (V*,E* = U)
consisting of only the vertices of G and no edges; This
can be viewed as n connected components, each ver-
tex being one connected component.

2. Executing the sub-algorithm reduction_DCMST
{Step 3 to step 6 find a solution of G.}

3. E1 = E;
4. Select the smallest cost edge emin = (vk,vh) from E1.
5. If the edge emin connects two different connected com-

ponents of T*, dT*(vk) < bk and also dT*(vh) < bh, then
{E* = E* + emin; E1 = E1 � emin;}

else
{E1 = E1 � emin; goto 4;}

6. if jE*j < n � 1 then
goto 4;

A. Ning et al. / Progress in Natural Science 18 (2008) 495–499 497



7. Using edge exchange techniques to improve the
solution.

end

The worst case time complexity of step 1 is O(n) where
n = jVj, step 2 is O(n3). The worst case time complexity
of steps 3–6 of the algorithm is also O(n). The worst case
time complexity of 2-opt is O(n2) and complexity of 1-opt
is O(n). So the worst case time complexity of the entire
algorithm is O(n3).

4. Experimental results and analysis

Example. Graph G and the weight of the edge are
presented in Fig. 1. The degree constraint b is be = bf = 1,
ba = bb = bd = bg = bh = bi = bj = 2, bc = 4.

Analysis:

(1) V = V* = {a,b,c,d,e, f,g,h, i, j}, E* = U, E = {(a,b),
(b,c), (c,d), (c,e), (d, f), (d,g), (d,h), (e, f), (g,h), (g, i),
(g, j), (i, j)}, T* = (V*,E*), G = (V,E)

(2) According to Theorem 2, we remove edge (e, f) from
G, and then the graph G is shown in Fig. 2.

(3) According to Theorem 1, we remove the pendant ver-
tices (vertices of degree 1) and corresponding edges
from the graph G and add the edges to tree T*, then
the graph G and tree T* are shown in Fig. 3.

(4) According to Theorem 3, we remove edge (d,h) and
edge (h,g) from the graph G and add them to tree
T*, then the graph G and tree T* are shown in Fig. 4.

(5) Find a solution of G by adding edges in the following
order:
a. Since edge (g, i) is the smallest edge in graph G

and satisfies all the other conditions, so add the
edge (g, i) to T*. Then change E* and E by execut-
ing the following operator:

E� ¼ E� þ ðg; iÞ; E ¼ E � ðg; iÞ

b. Since edge (i, j) is the smallest edge in graph G and
satisfies all the other conditions, so add the edge
(i, j) to T*. Then change E* and E by executing
the following operator:

E� ¼ E� þ ði; jÞ; E ¼ E � ði; jÞ

c. Since edge (c, f) is the smallest edge in graph G

and satisfies all the other conditions, so add the
edge (c, f) to T*. Then change E* and E by execut-
ing the following operator:

E� ¼ E� þ ðc; f Þ; E ¼ E � ðc; f Þ

d. Since edge (c,d) is the smallest edge in graph G

and satisfies all the other conditions, so add the
edge (c,d) to T*. Then change E* and E by execut-
ing the following operator:

E� ¼ E� þ ðc; dÞ; E ¼ E � ðc; dÞ

Now, the graph G and tree T* are shown in Fig. 5.
(6) Since no better solution can be achieved by edge

exchange, so Fig. 5 is the final solution.

5. Conclusion

In this paper, we have proposed a new algorithm for
DCMST. The algorithm employs the properties of the

Fig. 1. Graph G.

Fig. 2. Graph G after removing edge (e, f).

Fig. 3. Graph G (left) and tree T* (right).

Fig. 4. Graph G (left) and tree T* (right).

Fig. 5. Graph G (left) and tree T* (right).

498 A. Ning et al. / Progress in Natural Science 18 (2008) 495–499



problem to reduce it’s size and hardness and the edge
exchange technique to improve the existing solution.

Acknowledgements

This work was supported by the National Natural Sci-
ence Foundation of China (Grant No. 70471065), Shang-
hai Leading Academic Discipline Project (Grant No.
T0502) and Shanghai Scientific Special Funds for Cultiva-
tion and Selection of Excellent Young Teaching Staffs of
Higher Education (Grant No. 21012).

References

[1] Syslo MM, Deo N, Kowalik JS. Discrete optimization algo-
rithms. Englewood Cliffs: Prentice-Hall; 1983.

[2] Graham R, Hell P. On the history of the minimum spanning tree
problem. Ann Hist Comput 1985;7:43–57.

[3] Ribeiro CC, Souza MC. Variable neighborhood search for the
degree-constrained minimum spanning tree problem. Discrete Appl
Math 2002;118(1–2):43–54.

[4] Markus B, Michael J, Frauke L. A primal branch-and-cut algorithm
for the degree-constrained minimum spanning tree problem. In:
Proceedings of 6th international workshop on efficient and experi-
mental algorithms, Rome, Italy; 2007.

[5] Garey MR, Johnson DS. Computers and intractability, a guide to the
theory of NP-completeness. New York: W.H. Freeman and Com-
pany; 1979.

[6] Narula SC, Ho CA. Degree-constrained minimum spanning tree.
Comput Oper Res 1980;7(4):239–49.

[7] Andrade R, Lucena A, Maculan N. Using Lagrangian dual
information to generate degree constrained spanning trees. Discrete
Appl Math 2006;154(5):703–17.

[8] Goemans MX. Minimum bounded-degree spanning trees. In: Pro-
ceedings of the 47th annual IEEE symposium on foundations of
computer science; 2006. p. 273–82.

[9] Volgenant A. A Lagrangian approach to the degree-constrained
minimum spanning tree problem. Eur J Oper Res 1989;39:325–31.

[10] Knowles JD, Corne DW. A new evolutionary approach to the
degree-constrained minimum spanning tree problem. IEEE Trans
Evol Comput 2000;4(2):125–34.

[11] Krishnamoorthy M, Ernst AT, Sharaiha YM. Comparison of
algorithms for the degree constrained minimum spanning tree. J
Heuristics 2001;7:587–611.

[12] Raidl GR. An efficient evolutionary algorithm for the degree-
constrained minimum spanning tree problem. In: Proceedings of
the 2000 congress on evolutionary computation; 2000. p. 104–11.

[13] Caccetta L, Hill SP. A branch and cut method for the degree-
constrained minimum spanning tree problem. Networks
2001;37(2):74–83.

[14] Ning AB, Ma L, Xiong XH. Solving degree-constrained minimum
spanning tree with a new algorithm. In: Proceedings of 2007
international conferences on managements science & engineering.
Harbin, China, August 20–22; 2007. p. 381–6.

[15] Alberts D, Cattaneo G, Italiano G. An empirical study of dynamic
graph algorithms. In: Proceedings of the 7th annual ACM-SIAM
symposium on discrete algorithms. Atlanta, United States; 1992. p.
192–201.

[16] King V, Sagert G. A fully dynamic algorithm for maintaining the
transitive closure. In: Proceedings of the 31st ACM symposium on
theory of computing; 1999. p. 492–8.

[17] Lin S. Computer solutions of the traveling salesman problem. Bell
Syst Tech J 1965;44:2245–69.

A. Ning et al. / Progress in Natural Science 18 (2008) 495–499 499


